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Abstract: We propose using regression trees as a flexible and intuitive tool for modelling the
relationship between weather conditions and day to day changes of the visitor load in outdoor
recreation areas. Regression trees offer a number of advantages when compared e.g. to linear
models, specifically by outlining different seasonal and meteorological scenarios. When
applied to video monitoring data from the Lobau, an Austrian nature conservation area, good
regression tree models for the total number of visitors and the counts for some visitor
categories (bikers, hikers, swimmers) were found, while other categories could not be
adequately represented (dog walkers, joggers). The regression trees indicate a strong
relationship between weather and total visitor numbers, as well as weather and the number of
bikes and swimmers, respectively. The relationship to weather was found to be only slight for
hikers and dog walkers, and completely absent for joggers.
 In general, the use of derived meteorological quantities in form of thermic comfort indices for
characterizing weather conditions results in better models than the use of directly observable
meteorological quantities.

INTRODUCTION

It has been shown (Brandenburg, 2001,
Brandenburg and Ploner, 2002) that the number of
visitors to the Lobau can be predicted with good
results by using a combination of meteorological
variables and derived thermic comfort indices
which are used to describe human perception of
weather conditions. These predictions were based
on linear regression models for the logarithmised
visitor numbers.

Regression trees are an attractive alternative for
prediction because they handle nonlinearity and in-
teractions between variables implicitly. Addition-
ally, they offer a hierarchy of importance of the pre-
dictors involved, a classification of the data based
on both predictors and the predicted variable, and
an intuitive graphical representation of the model.

In this article, we hope to address three basic
questions:
1.the basic suitability of regression trees in

modelling visitor loads,
2.the possible improvement of model quality when

including meteorological information,
3.the relative merits of directly observable

meteorological variables like temperature as
opposed to derived comfort indices.

MATERIAL & METHODS

Data Collection
Visitor numbers were gathered using video ma-

terial collected between August 1998 and Septem-
ber 1999. Cameras were located at five main en-
trance points to the Lobau. Visitors were counted
and assigned to one of several user groups (hikers,
dog walkers, joggers etc.). Due to practical
problems with camera maintenance, specifically
during the initial phase of the project, complete data
from all five video stations was available for 206
days (out of 426) only. While we were able to
interpolate missing visitors numbers quite well by
using the results of the non-compromised stations,
we have followed the decision of Brandenburg,
2001, to use only the 206 complete days for
modelling. In order to take into account obvious
fluctuations in visitor numbers, these days are
classified as either 'workdays' (working days) or
''holidays' (i.e. either weekend or a public holiday).

Meteorological data were obtained from a
nearby weather station. The technical details of the
data collection are described in Brandenburg and
Ploner, 2002.

We have modelled both total visitor numbers
per day and the counts for five user categories:
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• Bikers and hikers make up the main part of
visitors to the Lobau.

• Dog walkers and joggers are comparatively
smaller user groups, but with potentially high
impact on the local wildlife.

• Swimmers also represent a smaller visitor
group, though through the typically longer
duration of their stay, they tend to have high
ecological impact.

Numerous meteorological  variables have been
considered for their relevance in recreation
behaviour (Brandenburg and Ploner, 2002). For use
as independent variables in the regression trees, we
have found it sufficient to work with ambient air
temperature, relative humidity, wind velocity,
precipitation, vapor pressure, and solar radiation,
each observed at 2 pm.

The meteorological elements listed above were
use to calculate a number of comfort indices. These
indices are combinations meteorological variables
that are designed to
measure the subjective
perception of weather on
a one-dimensional scale
corresponding to the
everyday use of 'good'
and 'bad' weather as
opposites on a fairly
continuos scale. For our
current work, we have
considered four
parameters:
• Equivalent

Temperature (Auer
et al., 1990),

• Effective
Temperature (Auer
et al., 1990),

• Chill Factor
(Becker, 1972),

• Physiologic Equivalent Tem-
perature (Matzarakis et al., 2000).

Definitions and some background
information on these indices is given
in Brandenburg, 2001.

 Working with regression trees,
we have found the Equivalent
Temperature (Teq) to be the most
useful comfort index: it gave
persistently better results than the
others, and was the only one that
offered high quality models for visitor
numbers on its own, without
including either one of the other
comfort indices or some
meteorological variable.

Classification and Regression Trees
(CART)

Regression trees describe the
relationship between a response variable and a set
of independent variables by recursively partitioning
the data set at hand. The methods and terminology
described in the following are due to Breiman et al.,
1984.

Starting with the full set of observations, the
current set is divided in two so as to make the two
new subsets as homogenous as possible in regard to
the response variable. This process is repeated until
all subsets appear to be sufficiently homogenous.
The resulting partition of the data set can be de-
scribed by a binary tree, where each terminal node
represents a subset of the observations, and each in-
terior node represents one of the splitting rules. The
value predicted by the model for each of the termi-
nal nodes is then an appropriate summary function
of the response variable within that node, usually
the mean. Figure 1 shows the graphical
representation of such a tree for the daily total
number of visitors to the Lobau: internal nodes are
shown as ovals, terminal nodes as rectangles, and

Figure 2. Regression tree for the total visitor number per day, using seasonal information and
meteorological data.
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Figure 1.Regression tree for the total visitor number per day, using only seasonal
information.
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the corresponding splitting criterion as edges; each
node contains the average visitor load for the
corresponding subset (first line), and the number of
days in the subset (second line). Starting from the
topmost (or root) node, which stands for the
complete set of observations, we see that the set
contains 206 days with 713.6 visitors on average. In
the first step, these observations are split up
according to whether they were made on a workday
(left branch) or on a holiday (right branch). The
corresponding nodes show that there are 135
workdays and 71 holidays, with average visitor
loads of 476.8 and 1164 respectively. The left node
is then split up again, this time according to the
season the observation occurred in: winter
workdays go to the right, all others to the left. The
right node, with 24 observations averaging 134.9
visitors, is a rectangular terminal node that is not
split up any further,  unlike the 111 days in the left
node. In this way, the 206 daily visitor counts are
split up into five subsets (terminal nodes) according
to workday and season, with visitor loads ranging
from 134.9 on winter workdays to 1682 on spring
and summer holidays.

In our approach, splitting rules involve only one
independent variable at a time: a simple threshold
value for intervalscaled or ordinal variables, and a
partition of the observed values for a nominal
variable. Starting from the root, all possible splits
for all variables within a node are considered, and
the one which produces the greatest homogeneity is
chosen; the process is then repeated for both
subnodes, until all nodes within the tree are
sufficiently homogenous. While this stepwise
procedure does not guarantee that the resulting tree
is optimal overall, it assures that important splits
happen before less important ones ('further up' the
tree).

Regression trees that are grown only with regard
to the homogeneity of the terminal nodes are well
known to overfit the data badly, resulting in need-
less and irreproducible complexity of the model.
This is avoided by balancing the size of the tree
against its cross-validated predictive power: the ini-
tially grown maximally homogenous tree is cut
back progressively by removing terminal branches,
resulting in a sequence of trees of decreasing com-
plexity and increasing cost (in terms of loss of pre-
dictive power). Among these trees, the most parsi-
monious one is chosen. This process is known as
cost-complexity pruning.

It has the added advantage that the tree model
comes together with a crossvalidated estimate of the
model quality. This estimate is calculated by
splitting up the data set randomly in ten subsets and
refitting the tree ten times, while leaving out each
one of the subsets in turn. The trees grown on
ninety percent of the data are then used to predict
the average for the left-out ten percent. The
combined mean squared predictions errors of the
crossvalidation runs, divided by the sample

variance, is called relative error (RE) by Breiman et
al. (1984, chapter 8.3). In this article, we use the
equivalent coefficient of determination, which we
write in a slight abuse of notation as

R2 = 1 - RE .

As Breiman et al. (op.cit.) note, R2 as defined above
is not really the same as in linear regression,
specifically it is neither the square of a correlation
coefficient nor can it be properly interpreted as the
amount of variance explained. Still, it is a measure
of model quality, with values close to one implying
good predictive power, and with values close to
zero implying a poor model. We feel that this is not
only more familiar for most researchers, it also
makes comparisons with linear models as described
e.g. in Brandenburg and Ploner, 2002, much easier
for the reader than the relative error.

The R software package we used in our analysis
(Ihaka and Gentleman, 1996) relies on the
approach described in  Clark and Pregibon, 1993,
the specific model that we employed (Poisson
deviance for counting data) on the implementation
described in Therneau and Atkinson, 1997.

Modelling Strategy
We have used regression trees to model visitor

numbers in several different user categories under
three different assumptions:
1.that apart from the visitor numbers, only seasonal

data is available, i.e. in which season a visitor
count was observed, and whether on a workday
or holiday,

2.that in addition to the seasonal information, we
have meteorological variables like ambient air
temperature, humidity,etc.,

3.that we have Teq values in addition to the seasonal
information.
The first class of models serves as a baseline

result, telling us how well we can expect to do in
predicting visitor loads without using
meteorological information at all. A comparison of
these results with the second and third class
hopefully shows the possible improvement in model
quality and predictive power when incorporating
weather information, and a comparison of the
models in the second and third class highlights the
respective advantages of directly observed and
derived meteorological variables.

RESULTS

Total Number of Visitors
Figure 1 shows the regression tree using only

seasonal information. The first split is according to
whether a day is a workday or not, and the
following splits are according to season: for
workdays, spring and fall are grouped together,
whereas for holidays, fall and winter, and summer
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and spring end up in the same terminal nodes.
Hardly surprising, the lowest average visitor load is
recorded on winter workdays (leftmost terminal
node), and the highest on spring and summer
holidays (rightmost terminal node).  Also, a summer
workday has a higher average visitor load (741.1)
than a holiday during the colder season (659.7). The
overall model quality is quite good for such a
simple model (R2=0.56).

Figure 2 shows the regression tree that
incorporates meteorological observations. Here, the
main split is according to solar radiation; the next
split for both nodes with high and with low solar
radiation is into workdays and holidays, and the
final splits are by  ambient air temperature. The
model partitions the observation days into seven
subsets, with average visitor loads ranging from
128.7 on workdays with low solar radiation and
temperatures below 9.5°C, to 1900 on holidays with
high solar radiation. The model quality is
quite good (R2=0.73) and clearly higher
than for the seasonal model in Figure 1.
For the total number of visitors at least,
using meteorological variables clearly
improves the model. The resulting  model
is also remarkably  balanced, in the sense
that  the second-level splits are on
workday, and the third level of splits on
temperature, so that the final subsets are
defined by the same variables in the same
order.

Figure 3 finally shows the regression
tree for daily visitor counts using only
seasonal information and Equivalent
Temperature (Teq) to characterise the
different scenarios. The quality of the
model is quite as good as that in Figure 2
(R2=0.72 instead of R2=0.73), though
with a slightly higher standard error
(s.e.=0.06 instead of s.e.=0.03). The root

node is first split into days with Teq
below and above 32.3. This is quite
close to the distinction between
''comfortable' (35.1 to 49) and  'cool'
(below 35.1) given for the Teq in Auer
et al., 1990, so we adapt these names
here for the right and left branches of
the tree, respectively. Both
comfortable and cool days are then
split up according to the workday,
and the cool days are then split up
again on Teq, into workdays above
and below 21.4, and holidays above
and below 21.51, respectively. The
splitting values  for cool workdays
and cool holidays are very similar, so
we interpret this as a split between
days that are properly 'cold' and days
that are merely 'cool', where the limit
is at a Teq value of approximately
21.5. The final partition can therefore

be read as cold workdays, cool workdays, cold
holidays, cool holidays, comfortable workdays and
comfortable holidays, with corresponding estimated
visitor loads (terminal nodes in Figure 3 from left to
right). This is a quite satisfying interpretation, and if
we look back to Figure 2, we see that the categories
derived using the solar radiation and the
temperature can be interpreted in much the same
way, though the model contains an additional split
of the set of days that we have denoted as
comfortable holidays above.

It should also be noted that the models in Figure
2 and 3 do not use the season to partition the
observation days. Apparently, the information in
both the meteorological variables and the Teq make
the rather artificial distinction between traditional
seasons redundant in explaining visitor loads for the
Lobau.

Figure 4. Regression tree for the number of bikers per day, using seasonal information
and meteorological data.
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Figure3. Regression tree for the total visitor number per day, using seasonal
informatio and Equivalent Temeprature (Teq).
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Bikers
The regression tree for the number of bikers per

day (not shown), based on seasonal information
only, is of comparable quality to the one for the
total visitor number (R2=0.57, see also Table 1),
though it is slightly more complex (six terminal
nodes instead of only five in Figure 1). Figure 4
shows that again, the inclusion of  meteorological
information clearly improves  the quality of the
model (R2=0.73). The main split here is between
days with temperatures above and below 15.5°C:
the right branch comprises cool days, while the left
branch might properly be designated as 'coolish and
above'. The cool days are then split again into
outright cold days (below 5.5°C), and moderately
cold to cool (between 5.5°C and 15.5°C). Note that
even on the 46 cold days, we can expect an average
of 40.11 bikers per day! The moderately cold to
cool days are split up again into workdays and
holidays, with about 2.5 times the average number
of bikers on holidays than on workdays. Going back
to the root node, the  'coolish and above' days are
also split up into workdays and holidays. The
holiday branch is then divided one more time, into
days with high and low humidity (above and below
58.8%), where humid days see about half of the
number of bikers than less humid days. The
workdays on the other hand are again divided into
coolish and 'comfortable or better' days, according
to air temperature (above and below 20.5°C); on the
coolish side, we have again the distinction between
humid and less humid days (above and below
62.5°C), again with about half the number of bikers
for the humid days. Compared to Figure 2, the tree
is somewhat larger, and clearly less balanced in the
relative importance of the independent variables.
This might suggest a more complex relationship
between weather and the number of bikers, though
it should be noted that the construction of the
regression tree in Figure 4 also requires only three
independent variables, none of
them what might be considered the
most obvious meteorological
parameter, i.e. precipitation. A
possible explanation for this
suspicious absence is offered in the
Discussion.

Figure 5 shows the regression
tree for the number of bikers, using
only seasonal information and the
Teq. The model shows a clear
improvement to the model in
Figure 4, indeed it is the best of all
our models (R2=0.81). As in Figure
3, the first split occurs according to
the Teq; the splitting value is
virtually the same (32.06 instead of
32.3), so again, we consider this as
a split between cool and
comfortable days. The cool days
on the left branch are then split up

into cold days (Teq below 21.4) and moderately cold
to cool days (Teq between 21.4 and 32.06). The
latter are then again divided into workdays and
holidays. The comfortable days are immediately
split up into workdays and holidays, and only the
workdays are further subdivided on the Teq, with
splitting value 46.08. In the classification given by
Auer et al., 1990, this is at the upper end of the
comfort zone (35.1 to 49), already close to the
category 'slightly humid' (49.1 to 56). In our case,
workday bikers seem to prefer the more humid
condition, so maybe here it stands rather for the
difference between a 'nice' and a 'very nice' day.

As for the total number of visitors, both the
meteorological variables and the  Teq make the
season redundant.

Hikers
Figure 6 shows the regression tree for the

average daily number of hikers, based on seasonal
information only. The main split is between
workdays and holidays, with workdays further
divided into cold season (fall and winter) and warm
season (spring and summer), whereas the distinction
for  holidays is between spring and the other
seasons. While the quality is quite good for this
simple kind of model (R2=0.61), adding either
meteorological variables or a comfort index (not
shown) does not substantially improve the quality
of the models (Table 1); these models also differ
only slightly from the one in Figure 6, by splitting
workdays according to solar radiation and Teq,
respectively, instead of seasons, with only minor
changes in predicted average visitor loads.
Specifically, the distinction between spring and the
other seasons remains for holidays, so that the right
subbranch is identical to the one in  Figure 6.

This implies that for the number of hikers,
weather is more relevant on workdays than on
holidays, even though its consideration does not

Figure 5. Regression tree for the number of bikers per day, using seasonal information
and Equivalent Temperature (Teq).
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improve model quality substantially. This agrees
with the fact that the largest numbers of visitors
were observed on the first weekends during spring
with tolerable weather conditions (Brandenburg and
Ploner, 2002). This seems to indicate that there is a
greater willingness for a weekend or holiday walk
in the Lobau, regardless of weather.

Dog Walkers
The regression tree for dog walkers shown in

Figure 7 is a simplified version of the model for
hikers shown in Figure 6: days are split into
workdays and holidays, and only holidays are
further split into spring holidays  and all others.
Including either meteorological data or comfort
indices did not change this model at all: apparently,
the number of dog walkers is quite independent of
meteorological conditions. Given the need to walk a
dog daily, this is not too surprising, though it might
be seen to imply that the majority of dog owners
come from the residential areas within walking
distance to the Lobau, as it appears improbable that
dog owners would travel far under bad weather
conditions.

The overall model quality is not good (R2=0.39),
so that apparently, there are factors neither seasonal

nor meteorological that cause the variation in the
number of dog walkers.

Joggers
The only model we were able to fit to describe

the average daily number of joggers distinguishes
between workdays and holidays, and is execrably
bad (R2=0.17). The model does not change when
meteorological variables or comfort indices are
added, so we find ourselves quite unable to make
predictions about the average number of joggers.

Swimmers
The seasonal model for the number of

swimmers (Figure 8) is quite what we would
expect: swimmers only in summer, more on
holidays than on workdays. Given the extremely
simple structure, the quality of the model is quite
good (R2=0.64).

Adding meteorological variables results in the
slightly more complex model shown in Figure 9: no
swimmers below 20.5°C ambient air temperature, a
few hardened cases between  20.5°C and  24.5°C.
Serious recreational swimming starts at  24.5°C,
with an average of 20.08 swimmers on workdays
and of 70.58 on holidays. While this model also
sounds quite plausible, it is even slightly worse than
the simple seasonal model (R2=0.59).

Adding the  Teq to the seasonal data, we get the
model in Figure 10: no swimmers below a Teq value
42.94, a lot above 42.94 on holidays, a few on
workdays with Teq values between 42.94 and 50.4,
and an average amount on workdays above 50.4.
The model quality is very good (R2=0.79). Note that
the splitting value 50.4 is already in the 'slightly
humid' zone (49.1 to 56) given in Auer et al., 1990,
whereas the other splitting value 42.94 is safely
within the 'comfortable' zone (35.1 to 49).

Seasonal Weather Teq
Total 0.56±0.05 0.73±0.03 0.72±0.06
Bikers 0.57±0.05 0.73±0.04 0.81±0.03
Hikers 0.61±0.07 0.65±0.07 0.64±0.07
Dog Walkers 0.39±0.05 - -
Joggers 0.17±0.08 - -
Swimmers 0.64±0.07 0.59±0.01 0.79±0.05
Table 1. Crossvalidated measures of determination R2 (with
standard errors) for three different classes of regression tree
models: using only seasonal information, i.e. season  and day of
the week (Seasonal), using seasonal information and meteo-
rological variables (Weather), and using seasonal information
and the Equivalent Temperature (Teq). For dog walkers and
joggers, these models are identical.

Figure 7. Regression tree for the number of dog walkers per
day, using only seasonal information.
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Figure 6. Regression tree for the number of hikers per day,
using only seasonal information.
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DISCUSSION

Suitability
The regression trees for visitor counts exhibited

mostly excellent (total count, bikers, swimmers) to
acceptable (hikers) model fit, only the trees for dog
walkers and joggers were of poor and very poor
quality, respectively. The models partition the set of
all observations into two to eight different subsets
that are defined by seasonal and meteorological
conditions. We feel that the interpretations we have
given based on the graphical representations of the
trees are persuasive, at least for the categories
where we could achieve good model fit (total count,
bikers, swimmers, hikers). For those categories
where we failed to do so (dog walkers, joggers), we
suspect that this is due to measurement error: these

are comparatively small groups, so that the samples
of the video material that were analysed (15
minutes out of every hour, see Brandenburg and
Ploner, 2002) did capture the number of joggers
accurately enough. Admittedly this is not the case
for swimmers, which are not much more numerous,
but this might be explained by the fact that the
distribution of visitors over the day has only one
pronounced peak for swimmers (slightly before
noon), but two (one in the evening and one in the
morning) for joggers and dog walkers, so that in
fact the visitors in the last two categories are spread
out more thinly over time.

Comparing these results with the linear models
fitted to the logarithmised visitor numbers in
Brandenburg and Ploner, 2002, we find that the
overall pattern of model quality is the same for most
user categories: excellent quality for the total
number and the bikers, slightly worse quality for the
hikers, only moderate quality for the dog walkers,
and very bad quality for the joggers. The R2 for
these linear models  is always higher than for the
corresponding regression trees, though we do not
feel that this represents a serious shortcoming: first,
R2 for the linear models is a proper proportion of
variance explained, which, as pointed out above, it
is not for the regression trees, so these values are
not strictly comparable; additionally, the linear
models were fitted to the logarithmised visitor
counts, so while any predictions made on the log-
scale can easily be transformed back to the original
scale by taking the exponential function, this is not
true of the error of the model. On top of this, we
achieved excellent model fit for the swimmers, for
who the linear model was even worse than for the
joggers, so that we score much better using
regression trees in at least one user category.

Using Weather Information
The best tree models are those that incorporate

meteorological data as a crucial part (total number,
bikers, swimmers); models that retain the season as
a variable in the presence of meteorological
information exhibit lower model quality (hikers),
while those that ignore it are bad to very bad (dog
walkers, joggers). In summary, if modelling is
worthwhile, it relies on meteorological data and
conversely, only through the inclusion of these data
are we able to achieve satisfactory model quality.

Meteorological Variables vs. Comfort Indices (Teq)
Models based on the Teq are never worse than

those using physical meteorological variables, and
distinctly better for bikers and swimmers. In case of
the hikers, where the comfort index does about as
well as the meteorological measurements, we found
that the former was more helpful in characterising
the partition suggested by the regression trees.

Figure 8. Regression tree for the number of swimmersper day,
using only seasonal information.

|

Season=Sp,Fa,Wi

Workday=Yes

Season=Su

Workday=No

6.291
206 days

0.06075
148 days

22.16
58 days

11.69
42 days

49.32
16 days

Swimmers (R2 = 0.64 ± 0.07)

Figure 9. Regression tree for the number of swimmers per day,
using seasonal information and meteorological data.

|

Temperature<24.5

Temperature<20.5 Workday=Yes

Temperature>=24.5

Temperature>=20.5 Workday=No

6.291
206 days

0.6757
173 days

0.05954
151 days

4.919
22 days

35.62
33 days

20.08
23 days

70.58
10 days

Swimmers (R2 = 0.59 ± 0.1)

Figure 10. Regression tree for the number of swimmers per day,
using seasonal information and Equivalent Temperature (Teq).

|

Teq<42.94

Workday=Yes

Teq<50.7

Teq>=42.94

Workday=No

Teq>=50.7

6.291
206 days

0.1011
168 days

33.57
38 days

19.28
25 days

8.587
13 days

30.68
12 days

60.57
13 days

Swimmers (R2 = 0.79 ± 0.05)
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CONCLUSIONS

• Regression trees offer models for visitor
numbers that are easily understood and can be
displayed attractively. They suggest  typical
combinations of circumstances for different
user groups which influence the decision to
visit the recreation area.

• The predictive power of the tree models is
comparable to the linear models given in
Brandenburg, 2001, without the need to use
logarithmised visitor numbers as the dependent
variable.

• Using meteorological variables for the tree
models improves their predictive quality and
makes them more interesting as a short-term
predictive management tool, at least for large
user groups.

• Using comfort indices, and specifically the
Equivalent Temperature, yields models that are
more powerful, simpler, and more intuitive
than using a combination of physical variables.
It is not clear though, whether the comfort
indices themselves can be predicted with a
sufficient degree of precision to make their use
practical.
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